70 research outputs found

    Molecular dynamics recipes for genome research

    Get PDF
    Molecular dynamics (MD) simulation allows one to predict the time evolution of a system of interacting particles. It is widely used in physics, chemistry and biology to address specific questions about the structural properties and dynamical mechanisms of model systems. MD earned a great success in genome research, as it proved to be beneficial in sorting pathogenic from neutral genomic mutations. Considering their computational requirements, simulations are commonly performed on HPC computing devices, which are generally expensive and hard to administer. However, variables like the software tool used for modeling and simulation or the size of the molecule under investigation might make one hardware type or configuration more advantageous than another or even make the commodity hardware definitely suitable for MD studies. This work aims to shed lights on this aspect

    The RHNumtS compilation: Features and bioinformatics approaches to locate and quantify Human NumtS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To a greater or lesser extent, eukaryotic nuclear genomes contain fragments of their mitochondrial genome counterpart, deriving from the random insertion of damaged mtDNA fragments. NumtS (Nuclear mt Sequences) are not equally abundant in all species, and are redundant and polymorphic in terms of copy number. In population and clinical genetics, it is important to have a complete overview of NumtS quantity and location. Searching PubMed for NumtS or Mitochondrial pseudo-genes yields hundreds of papers reporting Human NumtS compilations produced by <it>in silico </it>or wet-lab approaches. A comparison of published compilations clearly shows significant discrepancies among data, due both to unwise application of Bioinformatics methods and to a not yet correctly assembled nuclear genome. To optimize quantification and location of NumtS, we produced a consensus compilation of Human NumtS by applying various bioinformatics approaches.</p> <p>Results</p> <p>Location and quantification of NumtS may be achieved by applying database similarity searching methods: we have applied various methods such as Blastn, MegaBlast and BLAT, changing both parameters and database; the results were compared, further analysed and checked against the already published compilations, thus producing the Reference Human Numt Sequences (RHNumtS) compilation. The resulting NumtS total 190.</p> <p>Conclusion</p> <p>The RHNumtS compilation represents a highly reliable reference basis, which may allow designing a lab protocol to test the actual existence of each NumtS. Here we report preliminary results based on PCR amplification and sequencing on 41 NumtS selected from RHNumtS among those with lower score. In parallel, we are currently designing the RHNumtS database structure for implementation in the HmtDB resource. In the future, the same database will host NumtS compilations from other organisms, but these will be generated only when the nuclear genome of a specific organism has reached a high-quality level of assembly.</p

    RhythmicDB: A Database of Predicted Multi-Frequency Rhythmic Transcripts

    Get PDF
    The physiology and behavior of living organisms are featured by time-related variations driven by molecular clockworks that arose during evolution stochastically and heterogeneously. Over the years, several high-throughput experiments were performed to evaluate time-dependent gene expression in different cell types across several species and experimental conditions. Here, these were retrieved, manually curated, and analyzed by two software packages, BioCycle and MetaCycle, to infer circadian or ultradian transcripts across different species. These transcripts were stored in RhythmicDB and made publically available

    A Multi-Layered Study on Harmonic Oscillations in Mammalian Genomics and Proteomics

    Get PDF
    Cellular, organ, and whole animal physiology show temporal variation predominantly featuring 24-h (circadian) periodicity. Time-course mRNA gene expression profiling in mouse liver showed two subsets of genes oscillating at the second (12-h) and third (8-h) harmonic of the prime (24-h) frequency. The aim of our study was to identify specific genomic, proteomic, and functional properties of ultradian and circadian subsets. We found hallmarks of the three oscillating gene subsets, including different (i) functional annotation, (ii) proteomic and electrochemical features, and (iii) transcription factor binding motifs in upstream regions of 8-h and 12-h oscillating genes that seemingly allow the link of the ultradian gene sets to a known circadian network. Our multifaceted bioinformatics analysis of circadian and ultradian genes suggests that the different rhythmicity of gene expression impacts physiological outcomes and may be related to transcriptional, translational and post-translational dynamics, as well as to phylogenetic and evolutionary components

    Multifaceted enrichment analysis of RNA-RNA crosstalk reveals cooperating micro-societies in human colorectal cancer

    Get PDF
    Alterations in the balance of mRNA and microRNA (miRNA) expression profiles contribute to the onset and development of colorectal cancer. The regulatory functions of individual miRNA-gene pairs are widely acknowledged, but group effects are largely unexplored. We performed an integrative analysis of mRNA–miRNA and miRNA–miRNA interactions using high-throughput mRNA and miRNA expression profiles obtained from matched specimens of human colorectal cancer tissue and adjacent non- tumorous mucosa. This investigation resulted in a hypernetwork-based model, whose functional back- bone was fulfilled by tight micro-societies of miR- NAs. These proved to modulate several genes that are known to control a set of significantly enriched cancer-enhancer and cancer-protection biological processes, and that an array of upstream regulatory analyses demonstrated to be dependent on miR-145, a cell cycle and MAPK signalling cascade master regulator. In conclusion, we reveal miRNA-gene clusters and gene families with close functional relationships and highlight the role of miR-145 as potent upstream regulator of a complex RNA–RNA crosstalk, which mechanistically modulates several signalling path- ways and regulatory circuits that when deranged are relevant to the changes occurring in colorectal carcinogenesis

    Exon-trapping assay improves clinical interpretation of COL11A1 and COL11A2 intronic variants in stickler syndrome type 2 and otospondylomegaepiphyseal dysplasia

    Get PDF
    Stickler syndrome (SS) is a hereditary connective tissue disorder affecting bones, eyes, and hearing. Type 2 SS and the SS variant otospondylomegaepiphyseal dysplasia (OSMED) are caused by deleterious variants in COL11A1 and COL11A2, respectively. In both genes, available database information indicates a high rate of potentially deleterious intronic variants, but published evidence of their biological effect is usually insufficient for a definite clinical interpretation. We report our previously unpublished intronic variants in COL11A1 (c.2241 + 5G&gt;T, c.2809 − 2A&gt;G, c.3168 + 5G&gt;C) and COL11A2 (c.4392 + 1G&gt;A) identified in type 2 SS/OSMED individuals. The pathogenic effect of these variants was first predicted in silico and then investigated by an exon-trapping assay. We demonstrated that all variants can induce exon in-frame deletions, which lead to the synthesis of shorter collagen XI α1 or 2 chains. Lacking residues are located in the α-triple helical region, which has a crucial role in regulating collagen fibrillogenesis. In conclusion, this study suggests that these alternative COL11A1 and COL11A2 transcripts might result in aberrant triple helix collagen. Our approach may help to improve the diagnostic molecular pathway of COL11-related disorder

    Systematic Analysis of Mouse Genome Reveals Distinct Evolutionary and Functional Properties Among Circadian and Ultradian Genes

    Get PDF
    In living organisms, biological clocks regulate 24 h (circadian) molecular, physiological, and behavioral rhythms to maintain homeostasis and synchrony with predictable environmental changes, in particular with those induced by Earth's rotation on its axis. Harmonics of these circadian rhythms having periods of 8 and 12 h (ultradian) have been documented in several species. In mouse liver, harmonics of the 24-h period of gene transcription hallmarked genes oscillating with a frequency two or three times faster than circadian periodicity. Many of these harmonic transcripts enriched pathways regulating responses to environmental stress and coinciding preferentially with subjective dawn and dusk. At this time, the evolutionary history of genes with rhythmic expression is still poorly known and the role of length-of-day changes due to Earth's rotation speed decrease over the last four billion years is totally ignored. We hypothesized that ultradian and stress anticipatory genes would be more evolutionarily conserved than circadian genes and background non-oscillating genes. To investigate this issue, we performed broad computational analyses of genes/proteins oscillating at different frequency ranges across several species and showed that ultradian genes/proteins, especially those oscillating with a 12-h periodicity, are more likely to be of ancient origin and essential in mice. In summary, our results show that genes with ultradian transcriptional patterns are more likely to be phylogenetically conserved and associated with the primeval and inevitable dawn/dusk transitions

    Stepwise analysis of MIR9 loci identifies miR-9-5p to be involved in Oestrogen regulated pathways in breast cancer patients

    Get PDF
    miR-9 was initially identified as an epigenetically regulated miRNA in tumours, but inconsistent findings have been reported so far. We analysed the expression of miR-9-5p, miR-9-3p, pri-miRs and MIR9 promoters methylation status in 131 breast cancer cases and 12 normal breast tissues (NBTs). The expression of both mature miRs was increased in tumours as compared to NBTs (P < 0.001) and negatively correlated with ER protein expression (P = 0.005 and P = 0.003, for miR-9-3p and miR-9-5p respectively). In addition, miR-9-5p showed a significant negative correlation with PgR (P = 0.002). Consistently, miR-9-5p and miR-9 3p were differentially expressed in the breast cancer subgroups identified by ER and PgR expression and HER2 amplification. No significant correlation between promoter methylation and pri-miRNAs expressions was found either in tumours or in NBTs. In the Luminal breast cancer subtype the expression of miR-9-5p was associated with a worse prognosis in both univariable and multivariable analyses. Ingenuity Pathway Analysis exploring the putative interactions among miR-9-5p/miR-9-3p, ER and PgR upstream and downstream regulators suggested a regulatory loop by which miR-9-5p but not miR-9-3p is induced by steroid hormone receptor and acts within hormone-receptor regulated pathways

    Healthy and pro-inflammatory gut ecology plays a crucial role in the digestion and tolerance of a novel Gluten Friendlyâ„¢ bread in celiac subjects : Randomized, double blind, placebo control in vivo study

    Get PDF
    Gluten Friendlyâ„¢ (GF) is a new gluten achieved through a physicochemical process applied to wheat kernels. The goal of this research was to assess the in vivo effects of Gluten Friendlyâ„¢ bread on celiac gut mucosa and microbiota. In a double-blind placebo-controlled intervention study, 48 celiac disease (CD) patients were randomized into 3 groups to eat 100 g of bread daily, containing different doses (0; 3 g; 6 g) of GF for 12 weeks. The small-bowel morphology (VH/CrD), intraepithelial densities of CD3+, celiac serology, MUC2, CB1, gut permeability, proinflammatory cytokines, gluten in stools, symptoms, and gut microbial composition were assessed. All 48 CD subjects experienced no symptoms. K-means analysis evidenced celiac subjects clustering around unknown parameters independent of GF dosage: K1 35%; K2 30%; K3 35%. VH/CrD significantly decreased in K1 and K2. VH/CrD did not correlate with IEL increase in K2. 33-mer was not detected in 47% and 73% of patients in both K1 and K2, respectively. VH/CrD and IEL did not change significantly and strongly correlated with the absence of 33-mer in K3. Inflammation and VH/CrD decrease are strongly related with the presence of proinflammatory species at the baseline. A boost in probiotic, butyrate-producing genera, is strongly related with GF tolerance at the end of the trial. Our research suggests that a healthy and proinflammatory ecology could play a crucial role in the digestion and tolerance of the new gluten molecule in celiac subjects. However, GF can be completely digested by gut microbiota of CD subjects and shapes it toward gut homeostasis by boosting healthy butyrate-producing populations. The clinical trial registry number is NCT03137862 (https://clinicaltrials.gov).publishedVersionPeer reviewe
    • …
    corecore